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The same 23 structures were later processed by 
SIR using one-phase (according to Cascarano, 
Giacovazzo, Calabrese, Burla, Nunzi, Polidori & 
Viterbo, 1984) and two-phase seminvariants in addi- 
tion to conditions (a) and (b). In Table 3 for each 
structure the number of correct solutions is given 
(column PROT 2) together with the number of trials 
(in parentheses). 

Only four structures remain unsolved by SIR 
[however, it cannot be concluded that SIR is unable 
to solve those structures using non-default conditions; 
see for example, Burla, Giacovazzo & Polidori 
(1987)]. Very often the ratio (number of correct solu- 
tions/number of trials) is larger in PROT 2 than in 
PROT 1. Thus Table 3 provides clear evidence of how 
relevant phase seminvariants may be for the success 
of direct phasing procedures. 

Two further observations can be made. 
(1) The search of seminvariant pairs is made 

among the largest NRIF reflections commonly used 
for the ~2 list, while H varies over the complete subset 
of one-phase seminvariants. Limiting the cross term 
H to the strongest reflexions reduces both the comput- 
ing time of the procedure and (dramatically) the 
number of available two-phase seminvariants. A large 
subset of reliable two-phase seminvariants can be 
more easily found when H is unrestricted. 

(2) The factor SC used to rescale ~2 on the triplet 
reliability parameter a3 (a3 = 21EhEkEh+kl/N ~/2) was 
empirically chosen so as to satisfy 

0"6 x SC xY. a3=Y, a2, 

where the summations are over the most reliable 400 

triplets and two-phase seminvariants respectively. 
The scaling scheme is unsatisfactory from the theo- 
retical point of view, even if it works quite well 
in practice for all our test structures. It is hoped 
that future probability distributions will make 
available more efficient formulas "for estimating 
seminvariants. 
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Abstract 

Thermal diffuse scattering in high-energy electron 
diffraction is analysed using the Einstein model of 
lattice vibrations. An expression for the intensity dis- 
tribution in the Kikuchi pattern is obtained which 
includes thickness-dependent terms (i.e. a dependent- 
Bloch-wave theory is used) and the effects of a general 
crystal structure. The corresponding two-beam limit 
is shown to consist of four distinct terms, two of 
which depend on the phase of the structure factor. 
One of these is found to be non-zero only for non- 

0108-7673/89/010104-06503.00 

centrosymmetric crystals and for relatively thin crys- 
tals. It leads to an asymmetric Kikuchi band, even in 
a symmetrical scattering geometry. This asymmetry 
may be used to determine the polarity of non- 
centrosymmetric crystals. 

1. Introduction 

The theory of thermal diffuse scattering in high- 
energy electron diffraction and the associated process 
of Kikuchi pattern formation have been extensively 
studied over the last thirty years. Many of the earlier 
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papers discussed two-beam theory (e.g. Kainuma, 
1955; Fukuhara, 1963; Fujimoto & Kainuma, 1963; 
Ishida, 1970, 1971; Okamoto, Ichinokawa & Ohtsuki, 
1971; Chukhovskii, Alexanjan & Pinsker, 1973), this 
giving way to more general single scattering theories 
(Gj0nnes, 1966; Gj0nnes & H0ier, 1971; Rez, Hum- 
phreys & Whelan, 1977; Rossouw, 1985; Rossouw & 
Bursill, 1985) and analysis of the relationship between 
single and multiple diffuse scattering (H0ier, 1973; 
Yamamoto, 1980). In two recent papers Taft0 (1983, 
1987) has revived interest in two-beam theory by 
showing that structural and even phase information 
is retained in two-beam inelastic scattering. This is 
particularly interesting because of the well known 
result that phase information is lost in two-beam 
elastic scattering; at least three beams are required 
in this case [e.g. Bird, James & Preston (1987); see 
§ 3 for more discussion on this point]. In his papers 
Taft0 (1983, 1987) considered characteristic X-ray 
emission and energy-loss spectra from crystals with 
the non-centrosymmetric GaAs structure. By analys- 
ing the wave fields that are set up in two-beam diffrac- 
tion he explained a strong asymmetry that was 
observed between orientations close to the Bragg 
condition for +g and - g  reflections. This only occurs 
if the total intensity of the wave field is considered, 
rather than a sum of intensities from individual Bloch 
states. In other words, a dependent-Bloch-wave 
model must be used. Here we show that similar effects 
are present in two-beam thermal diffuse scattering. 
In non-centrosymmetric crystals this gives rise to an 
asymmetric Kikuchi band, even in a symmetrical scat- 
tering geometry where the incident orientation lies 
exactly in the centre of the band. In principle, this 
may be used to determine the polarity of any non- 
centrosymmetric crystal (Bird & Wright, 1988, 1989). 
Perhaps surprisingly, none of the papers referenced 
above examine the non-centrosymmetric case in 
detail. Fujimoto & Kainuma (1963) give a general 
expression for the diffusely scattered intensity but 
their discussion concentrates on centrosymmetric 
structures. Gj0nnes (1966) also gives general two- 
beam expressions but does not make the difference 
between centro- and non-centrosymmetric structures 
explicit. 

In § 2 a general expression for the intensity distribu- 
tion in the Kikuchi pattern is discussed. In order to 
keep the analysis as simple as possible an Einstein 
model of lattice vibrations is used. The equivalent 
two-beam expression is shown to consist of four dis- 
tinct terms of which, as is discussed in § 3, one is 
particularly interesting because it is non-zero only for 
non-centrosymmetric and relatively thin crystals. It 
is this term which retains phase information and leads 
to an asymmetric Kikuchi pattern. When combined, 
the four terms show how the Kikuchi pattern emerges 
as the crystal thickness is increased up to the eventual 
thick-crystal independent-Bloch-wave limit (Cherns, 

Howie & Jacobs, 1973; Rossouw & Bursill, 1985). 
The thickness cannot be too large, however, as only 
single diffuse scattering is considered. [Multiple scat- 
tering effects are well known to reverse the 
black/white Kikuchi line contrast in thick crystals 
(H0ier, 1973)]. In a second paper (Bird & Wright, 
1989) the special but important case of III-V and 
II-VI compounds with the GaAs structure is dis- 
cussed. Computational and experimental results will 
be presented which illustrate the theory discussed 
here. 

2. Theory 
The quantity we aim to calculate is the intensity at a 
point K' in the Kikuchi pattern which arises from an 
incident electron at K, where K and K' are wave-vector 
components parallel to the surface and describe the 
incident and outgoing electron orientations respec- 
tively. In a single-scattering approximation, and using 
the Einstein model, this becomes (Rez, Humphreys 
& Whelan, 1977; Rossouw & Bursill, 1985; Rossouw, 
1985) 

I(K') oz t ~-'~-'~-'~-" CJo*(K)CJg(K)CJo'(K ) 
jj" f f '  gg' hh' 

x C~'*(K)C:o(K')C:h*(K')C:o'*(K')C:hI(K') 
{exp [ i( k f -  k f ' ) t ] - e x p  [ i( k { -  k{')t]} 

x -~-k:-~--k~Zk~+k~')t 

x ~ e x p  [ i ( g - g ' - h + h ' ) . r  1S(~) KJ h-g, h ' -g ' (q )  
k 

where 

( l a )  

The sums j, j ' ,  f, f '  are over branches of the dispersion 
surface,j and j '  represent incident states at orientation 
K and f and f '  represent outgoing states at K'. C~ 
and k~ are the corresponding Bloch-wave coefficients 
and z wave-vector components respectively and t is 
the crystal thickness. The sums g, g', h, h' are over 
reciprocal-lattice vectors; the projection approxima- 
tion and a symmetric Laue geometry are used 
throughout the paper so all these vectors lie in the 
(x, y) plane, parallel to the crystal surfaces. K rep- 
resents the atoms within the unit cell. Each atom has 
a position coordinate r~, an atomic form factor v~ (q) 
and a Debye-Waller factor M,.  q represents the scat- 
tering vector and is defined as q = k ' - k ,  where k and 
k' are the wave vectors of the incident and outgoing 
plane waves. The component of q parallel to the 
surface is K' - K and its z component is approximately 
(K2-K'2)/2k, where k is the magnitude of the 
wavevector. This ignores the small differences in qz 
due to the interactions between different Bloch states 

(K) Sg, g,(q) = v~(q+g)v~(q+g')(exp [ - M ~ ( g -  g') 2] 

- exp { -  M~ [(q + g)2 + (q + g')2]}). ( lb)  
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in S(q), but these effects are retained in the t-depen- 
dent term in (1 a). Absorption has not been included 
explicitly but could be taken into account by adding 
imaginary parts iA j to the wave vectors. A uniform 
absorption iA acting on all the Bloch states simply 
leads to an overall t exp (-2At) factor (instead of t) 
multiplying ( la) .  Only anomalous absorption there- 
fore matters and since we shall be interested in rela- 
tively weak diffraction situations, this is not expected 
to be a major effect. Equation (1) includes the full 
thickness dependence of the diffuse scattering process 
(i.e. it represents a dependent-Bloch-wave result) and 
is valid for a general crystal structure. Rossouw (1985) 
also considers both these effects, but does not analyse 
the corresponding two-beam limit. 

As it stands, (1) includes the effects of diffraction 
on both the incident and outgoing electrons. 
However, since the Kikuchi pattern is formed by the 
final electron states, the diffraction of these must be 
most significant. The simplest approximation is to 
assume that the incident wave is undiffracted, i.e. it 
remains a plane wave. In this case ( la)  becomes 

I(K')oc t E Y. C~(K')C{*(K')C~'*(K')C{;(K') 
f f '  hh' 

x exp (iAYY't/2)[sin (A /J ' t /2 ) /A f f ' t /2]  

x E exp [ i (h ' -h ) . r~]S~)w(q)  (2) 
K 

where AII'= kYz - k~' and is related to the extinction 
distance s cII' by AII'= 27r/~/y'. Equation (2) contains 
only four sums over f ' s  and h's and is therefore much 
simpler to compute than ( la ) ,  although the time will 
still scale as N" in an N-beam calculation. In two- 
beam theory explicit expressions are available for the 
Bloch-wave coefficients and Ass'. We write the rel- 
evant reciprocal-lattice vector as H and the corre- 
sponding structure factor UH as - U  exp (i~o). The 
minus sign is included because electron form factors 
are negative - the interaction between electrons and 
atoms is basically attractive. The deviation parameter 
W is written W = H. 6K', where 6K' is the deviation 
away from the exact Bragg condition, - H / 2 .  For a 
non-centrosymmetric crystal the standard two-beam 
theory gives 

C~,= 2-'/2[1 + WI( U ~ + W2)1/2] 1/2 

Ci] = 2 - ' /2 [1  - Wl( u : +  w:)'/~] '/~ 
(3a) 

C h = exp ( iq~ ) C g 

C 2  = - e x p  ( i~o )C~ 

and 

A I ' 2 =  A = ( U 2 n  t- W2)l/2/k. ( 3 b )  

When (3) is substituted into (2) we eventually obtain 

[ u2( 
Ioc t  1 ½ U2 + W2 1 

+ t  ½ U 2 + W 2  1 

+ t U2+ W2 1 

sin(At) ' ] ]  
At ].1~--2 " S~'~)(q) 

sin (At)~ 
/~t / ]  ~ Sh"h(q) 

x~--" cos (q~ + H.r~)S~,~H) (q) 
K 

[ U (sin2 ( A t / 2 ) ) l  
+ t (u~+ w2),,2 \ ~ 

x~--" sin (~+H. rK)  cKI So,n(q). (4) 
K 

Equation (4) represents the basic result of this paper; 
it will be discussed in detail in the following section. 

To conclude the present section we examine the 
approximation leading to (2) and (4), namely the 
assumption that the incident wave remains undiffrac- 
ted. This should be a reasonably good approximation 
if K lies away from a region of strong diffraction, for 
example, near a high-index weak zone axis. There is 
no inconsistency between ignoring diffraction on the 
incoming states and including it on the outgoing states 
because K and K' are independent of each other. For 
any given K there will be a complete Kikuchi pattern 
formed by scattering into all possible K'. Obviously, 
diffraction on the outgoing states must be kept 
because this is the origin of the pattern. The analysis 
can be extended a little further by looking at large- 
angle scattering in ( la) .  In this case q is large com- 
pared with any g which contributes significantly, so 
v~(q+g)-~ v,,(q) and e x p [ - M ~ ( q + g )  2] is small. If 
we also assume that for the relevant g's M~g 2 is small, 
S ~) loses its g dependence and becomes simply 
I v~(q)l 2. This limit corresponds to having an interac- 
tion which is perfectly localized about each atomic 
site (e.g. Rossouw & Maslen, 1984). The only coupling 
between the incoming and outgoing states now acts 
through the thickness-dependent term in ( la) .  This 
can be removed if we make an independent-Bloch- 
wave approximation for the initial states by setting 
j =j ' .  As usual, the justification for this is that terms 
with j = j '  are of order unity, while those with j # j '  
fall off as 1 / ( k ~ - k ~ ' ) r  When the thickness exceeds 
the j , j '  extinction distance, the terms with j = j '  begin 
to dominate. Although it might seem strange to have 
the incident states being independent and the final 
states dependent, this too can be justified by the 
independence of K and K'. If we consider a relatively 
weak Kikuchi line that is well described by two-beam 
theory, the relevant extinction distance is fairly large, 
corresponding to a small splitting on the dispersion 
surface. However, if the incident orientation lies away 
from any weak two-beam point (for example, close 



D. M. BIRD AND A. G. WRIGHT 107 

to a zone axis) the branch splittings are considerably 
larger and typically, correspond to extinction dis- 
tances of order 100 A. Clearly cases could arise where 
the diffraction effects on the incoming and outgoing 
states are similar in size and this argument fails 
(Gjonnes, 1966). However, such situations can be 
avoided in experiments and the decoupling becomes 
a good approximation. 

With S (K) losing its g dependence and considering 
only terms with j = j ' ,  the K-dependent terms in (1 a) 
can be taken out to give 

Y. C~*(K)2 C~(K) e x p ( i g . r , )  = E I d ~ J ( K , r . ) l  ~ J • g J 

(5) 

where 0 J is the j th  Bloch wave 

0J(K,r )=Y.  CJe(K)exp[i(K+g).r]exp(ikJzz) (6) 
g 

with excitation amplitude e j =  C~*(K). The sum of 
Bloch-wave intensities (i.e. independent Bloch waves) 
on each atomic site in (5) simply has the effect of 
modifying the S (~) factors in (2) and (4), without 
changing the basic structure of these equations. 
Although this has been derived in a large-angle scat- 
tering limit a similar conclusion is expected to hold 
for smaller scattering angles where the localization 
of the interaction is not complete. It is also worth 
pointing out that in the same approximation, where 

(K) , , 
S (q) is independent o fh  and h (but r e t a i n i n g f # f  
terms), (2) can be written 

i l  L 2 I(K')oc E S(*)(q) dz • ef~r(K', rK) (7) 
K f 

0 

where now e f=Cf*(K ' )exp( - i k f t )  to match to 
plane waves below the crystal. This represents a 
dependent-Bloch-wave result, with the total intensity 
on each site being integrated over the crystal thick- 
ness. The difference between dependent and indepen- 
dent models can be clearly seen by comparison of 
(5) and (7). It is only in the dependent model that 
the thickness-dependent terms of (4) arise, and it is 
these terms that carry the interesting phase infor- 
mation. 

3. T w o - b e a m  resul ts  

We now return to (4) and examine the details of the 
two-beam intensity. As it stands, (4) only refers to 
one of the pair of linked Kikuchi lines, but the 
intensity of the second line is simply obtained by 
setting H--> - H  and ~--> - ~ .  For both lines a positive 
value of W points towards the centre of the Kikuchi 
band (see Fig. 1). The variation of intensity with 
orientation comes from two factors, through W (both 
explicitly, and in A) and the q dependence of S (~). 
For a relatively weak Kikuchi line the W dependence 

is most important since the diffraction is highly local- 
ized about the exact Bragg condition, W = 0 .  We 
therefore ignore the K' dependence of the S term and 
calculate it with K' at the Bragg position. All the 
orientation dependence now lies in the factors in 
square brackets in (4). This part of the second, third 
and fourth terms is shown in Fig. 2 as a function of 
the dimensionless deviation parameter w -- W~ U for 
thicknesses corresponding to 0.1~:, 0.25~ c and ~:, where 

= 27rk/U is the two-beam extinction distance at the 
Bragg position. The first term contribution is just 
1 -  (second term). Both the second and fourth terms 
are symmetrical about W = 0 and give either a peak 
(bright line) or trough (dark line) depending on the 
sign of the term. The third term is antisymmetric about 
the Bragg position and gives a bright/dark line profile. 
In considering the S (*) factors in (4) it is important 
to distinguish between a symmetrical and a general 
scattering geometry. In the symmetrical case the 
incident orientation lies exactly at the centre of the 
relevant Kikuchi band and S(0,"o )= S~,)H because Iq[ = 
Iq + HI (see Fig. 1). It follows that the first and second 
terms of (4) can be combined to give an orientation- 
independent term which simply represents the back- 
ground diffuse scattering. The pair of Kikuchi lines 
are also linked because '-"H,HK'(*) = '-)-H,-HK'(K) and ~'0,HC(*) _- 
S(*) Similar relationships hold for pairs of incident 0 , - H "  
orientations which lie on either side of centre of the 
band. This may be seen in Fig. l (a)  where IQI[ = 
]Q2+H[ and IQ2[ =]Q1+HI.  Equivalent results hold 
for Fig. l(b),  and between Figs. l (a )  and l(b).  The 
results derived below for a single symmetrical orienta- 
tion therefore apply equally well to a convergent- 

K: 

I ) 
H 

I 

QI I I~~Q2"F I  

KI K K2 
I 

- 0 +  
W (a) 

I" [ -H 
I 'K' 

I 

I 

K~ K K 2 
I 

÷0- 
W (b) 

Fig. 1. Two-beam Kikuchi band geometry for reflections +H. For 
clarity, the formation of the left-hand (a) and right-hand (b) 
lines are shown separately. K' is the final orientation (i.e. observa- 
tion point). K represents a symmetrical incident orientation and 
KI and K2 represent incident orientations on either side of the 
centre of the band (dashed line). The Q's are parallel components 
of the scattering vector. See text for details. 
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beam probe which lies exactly in the centre of the 
band (i.e. is on-axis with respect to the band). 

The thick crystal limit, At ~> 1 or t ~> ~:, shows how 
the familiar independent-Bloch-wave result for two- 
beam Kikuchi lines (e.g. Ohtsuki, 1983) is contained 
in (4). (We again emphasize that t cannot be so large 
that multiple scattering takes effect.) The fourth term 
goes to zero and the t-dependent parts of the first 
three tend towards 1 (Fig. 2). In an asymmetric 
geometry the first and second terms give rise to a 
bright-line/dark-line pair, while in the symmetric case 
only the third term remains and gives a bright/dark 
profile for each line (Fig. 2b), with a mirror symmetry 
linking the pair of lines. Whether the lines have their 
bright or dark part towards the centre of the band 

(K) 
depends on the sign of the ~ cos (~o +H.r~)So.H(q) 
factor. For large-angle scattering S (K) is positive, and 
for a primitive lattice (~o + H . r ~ )  = 0. In this case the 
Kikuchi line profile is given by +UW/(U2+ W2), 
which is bright towards the centre of the band. 

The thin crystal limit, t < ~:, shows how the Kikuchi 
pattern emerges from the uniform diffuse background 
of kinematic theory. At the exact Bragg position the 
1 - [ s i n  (At)/At] factors in the first three terms of (4) 
go like 2(~-t/~:)2 + O(t/£) 4, while the fourth term goes 

t t.o 
-10 6 W/U 10 

(a) 
-10 0 W/U 10 

(b) 

O.E 0.25 

1.0 

0 
-10 0 W/U 10 

(c) 

Fig. 2. The orientation dependent parts of the (a) second, (b) 
third and (c) fourth terms of equation (4), for thicknesses t / ~  = 

0.1, 0.25 and 1.0. Note the different scales in (a), (b) and (c). 

as ~t/~-½(~rt/~:)3 + O(t/~:)5. The fourth term there- 
fore makes a significant contribution in a dependent- 
Bloch-wave model and is the leading orientation- 
dependent term in thin crystals (see also Fig. 2). This 
term has two other interesting properties. First, it is 
non-zero only for non-centrosymmetric crystals. This 
follows because in the centrosymmetric case, with the 
origin at the inversion centre, all phases ~ are either 
0 or ~- and the contributions of the atoms at ±rK 
cancel. Second, it gives rise to a bright-line/dark-line 
pair of Kikuchi lines, even in the symmetrical scatter- 
ing geometry. This may be seen by putting H ~ - H  
and ~o-~-~ in which case the sin ( ~ + H . r K )  term 
changes sign. The mirror linking the pair of Kikuchi 
lines is therefore broken - as it is in the case of X-ray 
production discussed by Taft0 (1983). 

In the symmetrical geometry the overall form of 
two-beam Kikuchi lines is therefore controlled by a 
competition between the third and fourth terms of 
(4). In centrosymmetric crystals the fourth term is 
absent and the two lines on either side of the band 
are mirror related. In non-centrosymmetric crystals 
this mirror is broken. The degree of asymmetry 
depends on the relative sizes of the structure-depen- 
dent terms and on thickness because the effect of the 
fourth term decreases with increasing r In order to 
observe the asymmetry it is therefore best to work 
with the weakest Kikuchi lines visible in a pattern. 
These have correspondingly large two-beam extinc- 
tion distances and will satisfy the dependent-Bloch- 
wave criterion t < ~:. In principle this asymmetry may 
be used to determine the polarity of any non- 
centrosymmetric crystal because if a bright-line/dark- 
line pair is observed a calculation of the sign of 
~K sin (~o+H.rK)S (~) will enable +H to be distin- 
guished from - H .  In practice, a number of other 
factors must be taken into account. First, it is impor- 
tant to avoid regions where the chosen Kikuchi lines 
intersect other lines. Although these might show pro- 
nounced asymmetries the two-beam model is 
inadequate to describe them and the simple 
expressions of (4) cannot reliably be used. Second, 
the incident beam must be accurately on-axis because 
the first two terms of (4) give a similar bright- 
line/dark-line asymmetry in the off-axis case. This 
effect should not be too important for the weakest 
lines because its leading term goes as (t/~:) 2, while 
the structure-dependent asymmetry is of order ( t / f ) .  
Finally, the effects of a tilted or wedged crystal have 
not been considered. These are difficult to include in 
the theory but it is expected that the usual result, that 
small tilts do not significantly affect diffraction calcu- 
lations, will hold (e.g. Gj0nnes & Gjonnes, 1985). 

We have seen that the quantity (~0 + H . r ~ )  plays a 
vital role in the theory. It is through this term that 
the phase dependence of the Kikuchi pattern arises. 
As in the usual elastic diffraction theory, phase infor- 
mation can only be carried in the form of phase- 
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invariant quantities which are independent of the 
choice of origin. (~o+H.r~) satisfies this condition, 
but it takes a very different form from the invariants 
found in elastic diffraction, the simplest of which 
involves a sum of three phases (e.g. Bird, James & 
Preston, 1987). (q~ + H.r~) arises naturally in inelastic 
scattering theory because many such processes are 
localized about the atomic sites r~. It follows that in 
addition to thermal diffuse scattering, X-ray produc- 
tion and energy loss spectroscopy, phase-dependent 
two-beam effects should also be present in, for 
example, backscattered and channelling patterns 
(Marthinsen & H0ier, 1986; Marthinsen, Anisdahl & 
H~ier, 1987). Throughout the paper we have referred 
to our analysis being a two-beam theory, and in this 
context (q~ + H. r~) might be called a two-beam phase 
invariant. This, however, may be a little misleading.* 
Without an incident beam there could be no 'two- 
beam' Kikuchi pattern formation, so in this sense 
ours is a three-beam theory (one incident and two 
scattered beams), even though the incident beam is 
treated on a very different footing from the scattered 
beams and plays no significant role in the final results. 
Looked at this way, our results do not break the 
standard rule from elastic diffraction theory, that at 
least three beams are required to produce phase- 
dependent quantities. 

4. Concluding remarks 

The basic results of this paper are (2) and (4) which 
give the intensity distribution in a Kikuchi pattern. 
Both expressions show how structural information is 
carried in the pattern, provided a dependent-Bloch- 
wave theory is used. Equation (2) is valid in a general 
diffraction situation [with possible corrections from 
(5) and for absorption], such as the central region of 

* We are grateful to a referee for pointing this out. 

a strong band. The weakest lines in the pattern may 
be analysed using the two-beam result (4). In a second 
paper (Bird & Wright, 1989) computational results 
based on (2) and (4) are presented for crystals with 
the non-centrosymmetric GaAs structure and com- 
parison is made between theory and experimental 
patterns. 
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Abstract 

A necessary condition for possible translational parts 
of (3 + d) superspace symmetry operations is derived. 
The general conditions are discussed especially for 
(3+1) superspace symmetry operations and some 
examples illustrate the application. 

0108-7673/89/010109-03503.00 

I. Introduction 

An electron density function of incommensurate crys- 
tals with an internal dimensionality d can be 
described as a periodic function ~ in ( 3 + d ) -  
dimensional space (de Wolff, 1974). The translational 
periodicity in (3 + d) superspace is characterized by 
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